4.3. Принцип неопределенности
в квантовой механике

Этот принцип впервые сформулировал выдающийся немецкий физик Вернер Гейзенберг (1901-1976) в виде соотношения неточностей при определении сопряженных величин в квантовой механике, который теперь обычно называют принципом неопределенности. Суть его заключается в следующем: если мы стремимся определить значение одной из сопряженных величин в квантово-механическом описании, например, координаты х, то значение другой величины, а именно скорости или скорее импульса р = mv, нельзя определить с такой же

87

точностью. Иначе говоря, чем точнее определяется одна из сопряженных величин, тем менее точной оказывается другая величина. Это соотношение неточностей, или принцип неопределенности, выражается следующей формулой:

ΔхΔp = h ,

где х - обозначает координату, р - импульс, h - постоянную Планка, а Δ - приращение величины.

Таким образом, принцип неопределенности постулирует:

Невозможно с одинаковой точностью определить и положение, и импульс микрочастицы. Произведение их неточностей не должно превышать постоянную Планка.

На практике, конечно, неточности измерения бывают значительно больше, чем тот минимум, который предписывает принцип неопределенности, но речь идет о принципиальной стороне дела. Границы, которые устанавливаются этим принципом, не могут быть преодолены путем совершенствования средств измерения. Поэтому принцип неопределенности, по крайней мере в настоящее время, считается фундаментальным положением квантовой механики и неявно фигурирует в ней во всех рассуждениях. Теоретически не исключается возможность отклонения этого принципа и соответственно изменения связанных с ним законов квантовой механики, но в настоящее время он считается общепризнанным.

Из принципа неопределенности непосредственно следует, что вполне возможно осуществить эксперимент, с помощью которого можно с большой точностью определить положение микрочастицы, но в таком случае ее импульс будет определен неточно. Наоборот, если импульс будет определен с возможной степенью точности, тогда ее положение станет известным недостаточно точно.

В квантовой механике любое состояние системы описывается с помощью так называемой "волновой функции",

88

но в отличие от классической механики эта функция определяет параметры ее будущего состояния не достоверно, а лишь с той или иной степенью вероятности. Это означает, что для того или иного параметра системы волновая функция дает лишь вероятностные предсказания. Например, будущее положение какой-либо частицы системы будет определено лишь в некотором интервале значений, точнее говоря, для нее будет известно лишь вероятностное распределение значений.

Таким образом, квантовая теория фундаментально отличается от классической тем, что ее предсказания имеют лишь вероятностный характер и потому она не обеспечивает точных предсказаний, к каким мы привыкли в классической механике. Именно эта неопределенность и неточность ее предсказаний больше всего вызывает споры среди ученых, некоторые из которых стали в связи с этим говорить об индетерминизме квантовой механики. (Подробнее об этом см. следующую главу). Отметим, что представители прежней, классической физики были убеждены, что по мере развития науки и совершенствования измерительной техники законы науки станут все более точными и достоверными. Поэтому они верили, что никакого предела для точности предсказаний не существует. Принцип неопределенности, лежащий в основе квантовой механики, в корне подорвал эту веру.

89



Яндекс цитирования
Tikva.Ru © 2006. All Rights Reserved