14.3. Приложения клеточных моделей

Модель электорального процесса. В цикле работ Т.Брауна рассматривается ряд контекстуальных моделей электорального процесса. Он считает, что избирательные предпочтения индивида определяются установками его ближайшего окружения [8]. В одной из моделей предполагается, что индивид принимает решение голосовать в момент t + 1 за республиканцев или демократов в соответствии с правилом простого большинства. Учитываются взгляды индивида и четырех его ближайших соседей в момент t (окрестность фон Неймана). Если из пяти человек трое или больше поддерживают демократов, то индивид также голосует за демократов. Если большинство составляют республиканцы, то индивид и в этом случае разделяет точку зрения большинства.

В данном случае клеточный автомат имеет два состояния: 1 - голосование за республиканцев; 0 - голосование за демократов. Нетрудно заметить, что указанная модель может быть реализована на ЭВМ даже проще, чем рассмотренная выше игра "Жизнь".

Браун и его коллеги проводили вычислительные эксперименты на решетке 128х128, при этом начальное распределение задавалось случайным образом. Модель исследовалась на большом временном горизонте - до 20 000 тактов. Оказалось, что партийная

268

борьба приводит к очень сложным конфигурациям, существенно зависящим от исходного распределения. По мнению Брауна, данная модель относится к четвертому классу клеточных автоматов, так же как и игра "Жизнь". Однако детального исследования модели пока не проводилось и нахождение замечательных конфигураций в политической "Жизни", таких как "блок", "змея", "катапульта", еще впереди.

Рассмотрим обобщение модели Т.Брауна на случай, когда учитываются взгляды индивида и восьми его ближайших соседей (окрестность Мура). Если из девяти человек пятеро или больше поддерживают демократов, то индивид также голосует за демократов. Если большинство составляют республиканцы, то индивид и в этом случае разделяет точку зрения большинства.

Покажем, что данная модель может быть реализована на ЭВМ с помощью электронных таблиц даже проще, чем игра "Жизнь". Придадим клеткам исходной таблицы Excel вид небольших квадратов (с помощью форматирования). Отведем для модели поле 10 х 10 (клетки В2: К11) и зададим в нем начальное состояние.

Перейдем на лист 2 и введем в ячейку В2 формулу:

= ЕСЛИ (СУММ (Лист 1!А1: СЗ) > 4; 1; 0)

Данная логическая функция вычисляет "потенциал" ячейки В2 - в нашем случае число сторонников республиканцев. Если это число больше 4, то ячейке В2 присваивается 1 (автомат голосует за республиканцев), в противном случае присваивается 0 (голосование за демократов).

Размножим эту формулу на все ячейки В2:К11. Получим новое состояние системы, скопируем его и вставим с помощью команды "Специальная вставка" только "значения" в те же ячейки на листе 1. Запишем процедуру копирования в виде макроса. (Первым шагом при записи макроса должен быть переход с листа 1 на лист 2.) Назначим макросу клавиши быстрого вызова, например Ctrl+e. Теперь переход к следующему временному такту будет происходить после каждого нажатия этой комбинации клавиш [4].

Отметим, что для длительного прогона модели не требуется много раз нажимать кнопки. Достаточно одного нажатия. В Excel 2000 для выхода в режим редактирования макроса следует в меню "Сервис" выбрать команду "Макрос", затем "Макросы..." и "Изменить". На экране вы увидите подпрограмму. Интересно, что вы составили эту программу сами. Точнее, это сделал автоматически Excel, пока вы формировали макрос. Вставим в этот макрос цикл следующим образом. После первой

269

строки (Sub Макрос) вставьте строку For i = 1 То 100, а перед последней строкой (End Sub) вставьте строку Next i. Теперь одно нажатие клавиш Ctrl + e заставит модель проделать 100 шагов.

Изложенный подход основан на методологии иконологического моделирования (см. § 12.1). Отметим, что в данном случае возможности моделирования существенно расширяются за счет использования макросов. Умение слегка скорректировать текст макроса, вставляя операторы цикла и условного перехода, дает возможность пользователю самостоятельно строить сложные компьютерные модели, не прибегая к помощи программистов.

Модели диффузии инноваций. Индийские ученые предложили следующую модель клеточных автоматов [7]. Каждый индивид соответствует одной клетке, которая может находиться в двух состояниях: 1 - новинка принята; 0 - новинка пока еще не принята. Предполагается, что автомат, приняв новинку один раз, остается ей верен до конца.

Автомат принимает решение о принятии новинки, ориентируясь на мнение ближайших соседей (используется окрестность Мура). Пусть в окрестности данной клетки имеется т сторонников новинки. Генерируется случайное число р - вероятность принятия новинки. Если рт ≥ r, где r - фиксированное пороговое значение, то автомат принимает нововведение, в противном случае новинка пока отвергается.

Авторы модели полагают, что вероятность принятия новинки со временем должна уменьшаться, так как степень новизны постепенно снижается.

Моделирование проводилось на решетке 100х100. Эволюция системы рассматривалась на временном горизонте в 100 тактов, если вероятность принятия новинки р = 0,1, и 130 тактов при р = 0,05. Для каждого случая осуществлялось 50 прогонов модели. Проводилось также исследование влияния на поведение модели начального распределения сторонников новшества.

Для каждого временного такта t подсчитывалось число автоматов, принявших инновацию (nt). Приводимые авторами графики функции nt показывают хорошую степень совпадения с моделью Фишера - Прея (см. § 9.2).

По мнению индийских ученых, клеточное моделирование позволяет строить значительно более реалистические модели рынка, чем традиционные подходы к исследованию диффузии инноваций. Главное достоинство этого подхода заключается в возможности эмпирической оценки фактора р - вероятности

270

принятия новинки. Для этого можно использовать данные социологических опросов и материалы фокус-групп. Другое преимущество предлагаемого подхода заключается в возможности получения оценок необходимого числа сторонников и их пространственного распределения в начальный момент кампании.

♦ ♦ ♦

Исследования последних лет показывают, что многие физические и информационные процессы прекрасно описываются клеточно-автоматными моделями. Оказалось, что если к клетке приделать часы, то можно получить новые многообещающие формы представления процессов, протекающих в живой и неживой природе [1]. Очевидно, что, снабдив клетку даже примитивным искусственным интеллектом, можно исследовать более глубокие слои социальной реальности. Весьма перспективным направлением исследований является клеточное моделирование процессов кооперации и конкуренции с использованием для принятия решений моделей теории игр.

Читателю может показаться, что в данной главе рассматриваются разрозненные, ничем не связанные модели из различных областей науки, практики и сферы развлечений. Однако более внимательное отношение к рассматриваемым процессам показывает, что они все тесно взаимосвязаны. Игра становится Жизнью, Жизнь уже стала Маркетингом, Маркетинг становится Искусством (может быть единственным). И все эти процессы можно и нужно моделировать.

Задачи и упражнения

  1. Рассмотрите различные определения понятия "окрестность клетки". Какие еще модификации "окрестности" целесообразно исследовать?
  2. Позволяет ли клеточное моделирование исследовать географические особенности региона?
  3. Можно ли применить клеточное моделирование для анализа коммуникативных процессов?
  4. Реализуйте на ЭВМ модель электорального поведения Брауна. Используйте в своей модели различные виды окрестностей. Как это повлияет на поведение модели?
  5. Бесконечно расширяет возможности клеточного моделирования использование цвета. Дж. Касти полагает, что с помощью клеточных автоматов можно анализировать творчество художников. В работе [9] он рассматривает картину известного голландского абстракциониста Пита Мондриана "Шахматная доска. Яркие цвета". Картина представляетсобой, по мнению Касти, прямоугольную решетку из 256 клеток, раскрашенных в восемь цветов. Касти формулирует следующие задачи:

271

  • а) можно ли построить клеточный автомат, который бы из любой начальной конфигурации строил картину Мондриана?
  • б) можно ли построить "фильтр", позволяющий различать индивидуальные стили художников?
  1. Для освоения нюансов маркетинга целесообразно поиграть в следующую игру. Сконструируйте клеточную модель конкуренции на рынке двух (или более) новых продуктов. Каждому продукту должна соответствовать своя цифра (лучше свой цвет). Начиная со случайной исходной позиции два игрока наблюдают за процессами диффузии. Каждый пятый такт игроки могут вмешиваться в естественный ход процесса, добавляя по одному стороннику новинок.

Выработайте оптимальную маркетинговую стратегию.

Литература

  1. Беркович С.Я. Клеточные автоматы как модель реальности. М.: МГУ, 1993.
  2. Варшавский В.И., Поспелов Д.А. Оркестр играет без дирижера. М.: Наука, 1984.
  3. Лоскутов А.Ю., Михайлов А.С. Введение в синергетику. М.: Наука, 1990.
  4. Плотинский Ю.М. Иконологическое моделирование - новый инструмент социологов // Социологические исследования. 2000. № 5. С. 116-122.
  5. Тоффоли Т., Марголус Н. Машины клеточных автоматов. М.: Мир, 1991.
  6. Artificial Life / C.Langton et al. (eds.) N.Y.: Addison-Wesley, 1992.
  7. Bhargava et al. A Stochastic Cellular Automata. Model of Innovation Diffusion // Technological Forecasting and Social Change. 1993. Vol. 44. №1. P. 87-97.
  8. Brown T.A. Nonlinear Politics // Chaos Theory in the Social Sciences / Eds. L.D.Kiel, E.Elliot. Ann Arbor.: The Univ. Of Michigan Press. 1996. P. 119-137.
  9. Casti J.L. Searching for Certainty. N.Y.: W.Morrow, 1990.

272



Купить BlueTooth гарнитуру

Яндекс цитирования Rambler's Top100
Tikva.Ru © 2006. All Rights Reserved